Phenotypic manifestations of mutations in genes encoding subunits of cardiac potassium channels.

نویسندگان

  • Wataru Shimizu
  • Minoru Horie
چکیده

Since 1995, when a potassium channel gene, hERG (human ether-à-go-go-related gene), now referred to as KCNH2, encoding the rapid component of cardiac delayed rectifier potassium channels was identified as being responsible for type 2 congenital long-QT syndrome, a number of potassium channel genes have been shown to cause different types of inherited cardiac arrhythmia syndromes. These include congenital long-QT syndrome, short-QT syndrome, Brugada syndrome, early repolarization syndrome, and familial atrial fibrillation. Genotype-phenotype correlations have been investigated in some inherited arrhythmia syndromes, and as a result, gene-specific risk stratification and gene-specific therapy and management have become available, particularly for patients with congenital long-QT syndrome. In this review article, the molecular structure and function of potassium channels, the clinical phenotype due to potassium channel gene mutations, including genotype-phenotype correlations, and the diverse mechanisms underlying the potassium channel gene-related diseases will be discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resurgence of sodium channel research.

A variety of isoforms of mammalian voltage-gated sodium channels have been described. Ten genes encoding sodium channel alpha subunits have been identified, and nine of those isoforms have been functionally expressed in exogenous systems. The alpha subunit is associated with accessory beta subunits in some tissues, and three genes encoding different beta subunits have been identified. The alpha...

متن کامل

Myriad roles of voltage-activated potassium channel subunit Kvβ1.1 in the heart.

ELECTRICAL ABNORMALITIES within the heart can often result in the development of arrhythmias that may further progress into sudden cardiac death; often the origins of these developments remain largely unknown. Atrial fibrillation, which is one of the most common type of heart arrhythmia, affects an estimated 3–6 million people within the United States (Center for Disease Control). Arrhythmic ev...

متن کامل

Mutation in KCNQ1 that has both recessive and dominant characteristics.

Inherited forms of long QT syndrome (LQTS) are characterised by an extended QT interval and clinical manifestations that include syncope and sudden death. The known genes in which mutations give rise to LQTS all produce components of cardiac ion channels. The two genes mutated in the majority of cases are KCNQ1 or HERG. The proteins produced from these genes are subunits which form tetrameric t...

متن کامل

Letter to Jmg

Inherited forms of long QT syndrome (LQTS) are characterised by an extended QT interval and clinical manifestations that include syncope and sudden death. The known genes in which mutations give rise to LQTS all produce components of cardiac ion channels. The two genes mutated in the majority of cases are KCNQ1 or HERG. The proteins produced from these genes are subunits which form tetrameric t...

متن کامل

Long QT syndrome-associated mutations in the S4-S5 linker of KvLQT1 potassium channels modify gating and interaction with minK subunits.

Long QT syndrome is an inherited disorder of cardiac repolarization caused by mutations in cardiac ion channel genes, including KVLQT1. In this study, the functional consequences of three long QT-associated missense mutations in KvLQT1 (R243C, W248R, E261K) were characterized using the Xenopus oocyte heterologous expression system and two-microelectrode voltage clamp techniques. These mutations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 109 1  شماره 

صفحات  -

تاریخ انتشار 2011